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Consideration is given to the solution of the problem of minimization of fuel consumption in heating a rec-
tangular prism in a continuous furnace.

In the case of operation of flame furnaces, problems of minimization of scaling and the decarbonized-layer
thickness arise. At present, a decrease in the consumption of a gas over the period of heating of a billet in a furnace
is one of the central and most important problems. Problems of this type have been considered extensively in the lit-
erature; however, in the majority of works a study has been made of the case not taking into account the temperature
distribution over the metal volume. This can lead to the acceptability of the results obtained because of the possible
temperature averaging: the maximum or minimum temperature over the cross section will not satisfy the conditions of
the technological regime. From this viewpoint, calculation by a two-dimensional scheme is more acceptable.

Let us consider the problem of optimal control by the minimum gas consumption using, as an example, the
walking-beam furnace of the 320/150 mill of the Belarusian Metallurgical Plant.

The problem of heating of a prism has been described in [1]. Under the assumptions made in [1, 2], the prob-
lem for a prism (Fig. 1) in the case of convective heat exchange has the form
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Since, at the end of heating, the billet must have a temperature distribution over the cross section as close to
the prescribed uniform distribution as possible, we have the restriction

   max
x2[0,p]

y2[0,q]

( T (x, y, tfin) − Tfin)  ≤ ξ . (4)
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We assume [3] that the furnace temperature Tfur(t) is related to the gas consumption B(t) by the following re-
lation:

dTfur (t)
dt

 = A1B (t) − A2 (Tfur (t) − Tamb) − A3 






 ∫ 

0

q



α (Tfur (t) − T (q, y, t))


 dy + ∫ 

0

p



α (Tfur (t) − T (x, p, t))


 dx







 , (5)

where A1, A2, and A3 are certain coefficients [1, 3]:

A1 = 
Qlow + VaCaTa + CtemTtem − VflCflTout

1.1MtrCtr
 ,   A2 = 

2Fw

MtrCtr (S1
 ⁄ λ1 + S2

 ⁄ λ2 + 1 ⁄ αw)
 ,

A3 = 
PCm

990ρC (T)⋅mes V⋅MtrCtr
 .

With allowance for the technical restrictions, we write for t 2 [0, tfin] and Tfur(0) = Tfur
0

B1 ≤ B (t) ≤ B2 , (6)

here B1 and B2 are the minimum and maximum consumptions of the gas by the furnace.
The problem of optimal control of heating of a billet by the minimum gas consumption is as follows: it is

necessary to find a piecewise-continuous function of the gas consumption B(t), satisfying restriction (6), which would
bring the solutions of problem (1)–(5) from the state T0(x, y) and Tfur

0  at the instant of time 0 to the state satisfying
condition (4), during which the functional minimum could be provided:

I (B (t)) = ∫ 

0

tfin

B (t) dt . (7)

We note that functional (7) characterizes the total gas consumption by the furnace. To solve the problem we use the
method of main optimization; in this case, the main operating regime of the furnace is determined as the most useful
as far as the increment in the functional is concerned and, obviously, has the form

B
∗
 (t) = B1 . (8)

It follows that any solution of problems (1)–(3) and (5), t 2 [t1, t2], will be the main line on condition that B(t) = B∗ (t).

Fig. 1. Diagram of the prism.
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From the principle of the maximum it is evident that the optimal regime of heating can take only two values,
B1 and B2. Therefore, this problem can be characterized by the instants of time of reaching of the main regime by the
solution of the temperature problem (in principle, the number of these instants of time can be infinite).

In numerical form, the algorithm can be represented in the following manner: assume that we have a grid
(Fig. 2) with nodes (Xm, Yk, tn), where

Xm = m∆x ,   m = 0, M
____

 ,   Yk = k∆y ,   k = 0, K
____

 ,   tn = n∆τ ,   n = 0, N
____

 .

Let the grid region fill the prism cross section in such a way that the cross-section boundary passes at the center of
the last layers of the grid region
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Fig. 2. Diagram of location of the grid region in the cross section of the
prism.
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All of the above is correct for n 2 1, N
____

.
The functional can be replaced by the following sum:

I (B) =  ∑ 

n=0

N

 Bn + D  max
m=0,M
k=0,K

 ( Tmk
N

 − Tfin)  , (15)

where D is a certain constant characterizing a "penalty" for the nonfulfillment of condition (4). In selecting this con-
stant, one must be guided by considerations of the necessity for this condition: at a large constant it is possible to lose
the optimal fuel regime, while at a low value of the constant the difference between acceptable and unacceptable so-
lutions will be quite unnoticeable.

This case represents a problem of large-dimensionality mathematical programming. The functional can be
minimized according to the following algorithm:

Step 0. Let us assume that the number of instants of reaching of the main regime by the problem solution is
i = 0 and assign a certain maximum number i0. Setting the gas consumption for the regime with i instants of reaching
to be the maximum possible gas consumption, we have I(B0) = B2tfin.

Step 1. We set i = i + 1. If i > i0, we complete the calculations.
Step 2. Next we assign a certain discrete regime for the instants of reaching of the main regime by the prob-

lem solution and calculate the fuel consumption I0(Bi), i.e., functional (15) without accounting for the penalty.
Step 3. Provided that I(Bi−1 < Iwith(Bi), we pass to step 2.
Step 4. We set the instant of time n = 0 and determine Tmk

n , Tfur
n , and Bn.

Step 5. We set n = n + 1; if n > N, then, before passing to step 2, we calculate functional (15); if the value
of the functional is less than the running one, we hold it.

Step 6. Using Eqs. (9)–(15), we calculate Tmk
n , Tfur

n , and Bn. Then we pass to step 5.
It should be noted that at step 2 the discrete regimes can be generated by the method of exhaustive search

for all possible regimes.
The algorithm given in this work was implemented to calculate the optimal regime of metal heating. In the

course of the work, we investigated the dependence on the number of acts of reaching the main line. The optimal re-
gime is presented in Fig. 3.

NOTATION

t, running time, h; tfin, time of completion of the heating, h; q and p, half the length and width of a narrow
prism face, m; x and y, running coordinates of a narrow prism face, reckoned from the center, m; Tfur(t), furnace tem-
perature at the instant of time t, K; α, coefficient of convective heat exchange, W/(m2⋅K); λ(T), thermal conductivity,
J/(m⋅h⋅K); C(T), heat capacity, J/(kg⋅K); ρ, density, of the material, kg/m3; T0(x, y), initial temperature distribution in the

Fig. 3. Change in the temperature of the billet center (solid curve) and in the
fuel consumption (dotted curve). T, K; V, m3; t, h.
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prism cross section, K; T(x, y, t), temperature at the point (x, y) at the instant of time t, K; mesV, cross-sectional area of
the prism, m2; P, efficiency of the furnace, kg/h; Cm, average specific heat of the metal, J/(kg⋅K); B(t), fuel consumption,
kg/s and m3/s; Vfl, volume of the combustion products formed in burning of 1 kg or 1 m3 of the fuel, m3/kg and
m3/m3; Cfl, specific heat of the combustion products, J/(m3⋅K); Tout, temperature of the outgoing flue gases (taken in
conformity with the furnace temperature); Tamb, ambient air temperature, K; S1

 ⁄ λ1 and S2
 ⁄ λ2, thermal resistances (ratios

of the thickness of the lining layers to their thermal-conductivity coefficient) for the first and second layers, m2⋅K/W;
αw, coefficient of heat transfer from the outer surface of the furnace walls to the environment, W/(m2⋅K); Fw, area of
the outer surface of the furnace lining, m2; Ctr and Mtr, average specific heat (J/(kg⋅K)) and mass (kg) of the transpor-
tation devices found in the furnace during the period ∆t; Qlow, low combustion heat of the fuel, J/kg and J/m3; Va,
volume of air needed for burning 1 kg or 1 m3 of the fuel (with account for the required excess air), J/(m3⋅K); Ta,
temperature of heating of the air, K; Cf, average specific heat of the fuel, J/(kg⋅K) and J/(m3⋅K); Tf, temperature of the
heating of fuel, K; ξ ≥ 0, certain constant; Tfin(k, y), desired (final) temperature distribution in the prism. Subscripts: w,
wall; fin, final; tr, transportation devices; fur, furnace; fl, flue gases; out, outgoing flue gases; a, air; m, metal; amb,
ambient air; with, without account; low, low.
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